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The Physical Mechanism of Flame

Propagation in Premixed Reactants
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From the paper by Williams, F.A., “Progress
in knowledge of flamelet structure and extinction,"
Progress in Energy and Combustion Science
26: 657-682 (2000).
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Flame propagation in premixed
reactants is caused by

the heat release in chemical

reactions
and

the molecular transport of the
heat into the unburned mixture.
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The Physical Mechanism of Flame
Propagation in Premixed Reactants
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The key peculiarity of premixed
combustion is as follows:

major chemical reactions
that control the heat
release are confined to
very thin reaction zone!
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Typical Values of
Laminar Flame Speed and Thickness

SLOC\/KuWTm 0, € Z‘mocgz
Hydrocarbon-air flames: Hydrogen-air flames:
« §,=0.4 m/s * §5,=2 m/s
* k,~0.02 cm?/s « K,~0.05 cm?/s
* 0~0.05 mm * 0~0.02 mm
* 0,0.5 mm * 0,0.2 mm
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Turbulent Flows
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Main Characteristics of Turbulence

rms turbulent velocity
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Turbulence Spectrum

From the book by S.B. Pope “Turbulent Flows”,
Cambridge University Press, Cambridge, UK, 2000.
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Effect of Turbulent Velocity
on Flame Speed

Experiments by Karpov and Severin
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Physical Mechanism of the Increase in
Flame Speed by Turbulent Velocity

Picture from the paper by Fox, M.D. and Weinberg, F.J. “An experimental
study of burner stabilized turbulent flames in premixed reactants”,

Proceedings of the Royal Society of London, A268:222-239, 1962.
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Physical Mechanism of the Increase in
Flame Speed by Turbulent Velocity
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Effect of Laminar Flame Speed
on Turbulent Burning Velocity

Experiments by Karpov and Severin
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Effect of Laminar Flame Speed
on Turbulent Burning Velocity

Experiments by Karpov and Severin
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» Turbulent burning
velocity U, is increased
by the laminar flame
speed S|, all other
things being equal.

=) The larger the laminar
flame speed, the higher
the rate of the increase
in the burning velocity
by rms turbulent
velocity
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Effect of Laminar Flame Speed
on Turbulent Burnlng Velocity
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Empirical Parameterization for
Turbulent Burning Velocity

Experiments by Karpov and Severin
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Empirical Parameterization for
Turbulent Burning Velocity
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Empirical Parameterization for
Turbulent Burning Velocity
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Why Does Turbulent Burning Velocity
Depend Non-Linearly
on the Laminar Flame Speed?

Self-propagation
of laminar flame
fronts reduces the
instantaneous flame
surface area, i.e.,
2 .decreases when
S, increases!
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Is Turbulent Burning Velocity Always
Increased by the Laminar Flame Speed?
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Strong Effect of the Lewis Number
on Increase in Burning Velocity

3
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An Important Peculiarity of
Hydrogen-Air Mixtures

* Molecular diffusion coefficient of hydrogen D, in
the air on the order on 0.6 cm?/s

» Molecular diffusion coefficient of oxygen D, in the
air on the order on 0.2 cm?/s

« Molecular heat diffusivity of the air x on the order
on 0.2 cm?/s

Hydrogen-based Lewis number\%erk/DHz\ IS
substantially lower than unity in lean mixtures!
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Effect of the Lewis Number
on Turbulent Burning Velocity

Data by Kido et al. Fuel/O/N,/He, S, =0.43 m/s

C,H,: Le=1.9
C2H6; Le=1.5
o CH,;Le=1.0
o Hz; Le=0.6

burning velocity, m/s
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rms turbulent velocity, m/s
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Temperature Variations in Curved Flamelets
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Temperature Variations in Curved Flamelets
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Temperature Variations in Curved Flamelets
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Mass Fraction Variations in Curved Flamelets
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Mass Fraction Variations in Curved Flamelets

fresh gas fresh gas

‘5+ *?_J T
&) I

v =

heat conductivity diffusivity

Second European Summer School on Hydrogen Safety, Belfast, August 1, 2007



CHALMERS Department of Applied Mechanics

Effect of the Lewis Number on
Burning Rate in Curved Flamelets
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Effect of Molecular Diffusivity on
Burning Rate in Curved Flamelets

fresh gas fresh gas lean mixture

R\ Ral }\
', ’ % ,\\f

Very rich mixture
diffusion of oxygen diffusion of hydrogen

Second European Summer School on Hydrogen Safety, Belfast, August 1, 2007



CHALMERS Department of Applied Mechanics

Temperature Variations in Strained Flamelets
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Temperature Variation in Strained Flamelets
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Mass Fraction Variation in Strained Flamelets
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Effect of the Lewis Number on
Burning Rate in Strained Flamelets

a<D (Le<l) a>D (Le>1)

</ \> </ \>
\/ \/

Second European Summer School on Hydrogen Safety, Belfast, August 1, 2007



CHALMERS Department of Applied Mechanics

Effect of the Lewis Number on
Burning Rate in Strained Flamelets

C3 Hngil‘, ¢=2 .25
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From the paper by Law, C.K. and Sung, C.J.,

“Structure, aerodynamics, and geometry of premixed flames”,
Progress in Energy and Combustion Science 26: 459-505 (2000).
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Effect of the Lewis Number on
Quenching of Strained Flamelets
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From the paper by Law, C.K. and Sung, C.J.,

“Structure, aerodynamics, and geometry of premixed flames”,
Progress in Energy and Combustion Science 26: 459-505 (2000).
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Effect of the Lewis Number on
Quenching of Strained Flamelets
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Why does Molecular Transport
Substantially Affect
Premixed Turbulent Combustion
at High Reynolds Number?
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Flame Instabilities
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Why does Molecular Transport
Substantially Affect
Premixed Turbulent Combustion
at High Reynolds Number?
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Modeling of
turbulent combustion
of lean hydrogen-air
mixtures?
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