A Distinctive Feature of Turbulent Combustion of Lean Hydrogen-Air Mixtures

Andrei N. Lipatnikov

Department of Applied Mechanics Chalmers University of Technology

Contents of the Lecture

Background

- ✓ Laminar premixed flame
- ✓ Turbulence
- ✓ The major physical mechanism of premixed turbulent combustion
- Experimental data on turbulent burning velocity
 - ✓ Ordinary hydrocarbon-air mixtures
 - ✓ Lean hydrogen-air mixtures
- Why does molecular transport substantially affect turbulent combustion at high Reynolds number?

Contents of the Lecture

Background

- ✓ Laminar premixed flame
- ✓ Turbulence
- ✓ The major physical mechanism of premixed turbulent combustion
- Experimental data on turbulent burning velocity
 - ✓ Ordinary hydrocarbon-air mixtures
 - ✓ Lean hydrogen-air mixtures
- Why does molecular transport substantially affect turbulent combustion at high Reynolds number?

Department of Applied Mechanics

The Physical Mechanism of Flame Propagation in Premixed Reactants

Flame propagation in premixed reactants is caused by

the heat release in chemical reactions

and

the molecular transport of the heat into the unburned mixture.

Department of Applied Mechanics

The Physical Mechanism of Flame Propagation in Premixed Reactants

The key peculiarity of premixed combustion is as follows: major chemical reactions that control the heat release are confined to very thin reaction zone!

Typical Values of Laminar Flame Speed and Thickness

$$S_L \propto \sqrt{\kappa_u w_{Tm}}$$

Hydrocarbon-air flames:

- S_L≈0.4 m/s
- κ_u≈0.02 cm²/s
- *δ_r*≈0.05 mm
- δ_τ≈0.5 mm

Hydrogen-air flames:

- *S_L*≈2 m/s
- κ_u≈0.05 cm²/s
- *δ_r*≈0.02 mm
- *δ*_{*τ*}≈0.2 mm

Laminar Flame Speed

Department of Applied Mechanics

Turbulent Flows

Photograph by Corke & Nagib

Photograph by Dimotakis et al.

Department of Applied Mechanics

Main Characteristics of Turbulence

rms turbulent velocity

Integral length scale

Department of Applied Mechanics

Turbulence Spectrum

Effect of Turbulent Velocity on Flame Speed

Department of Applied Mechanics

 \mathcal{S}_{I}

Physical Mechanism of the Increase in Flame Speed by Turbulent Velocity

Picture from the paper by Fox, M.D. and Weinberg, F.J. "An experimental study of burner stabilized turbulent flames in premixed reactants", Proceedings of the Royal Society of London, A268:222-239, 1962.

 $\delta_I \ll \delta_t$

Department of Applied Mechanics

Physical Mechanism of the Increase in Flame Speed by Turbulent Velocity

Contents of the Lecture

Background

- ✓ Laminar premixed flame
- ✓ Turbulence
- ✓ The major physical mechanism of premixed turbulent combustion

Experimental data on turbulent burning velocity

- ✓ Ordinary hydrocarbon-air mixtures
- ✓ Lean hydrogen-air mixtures
- Why does molecular transport substantially affect turbulent combustion at high Reynolds number?

Effect of Laminar Flame Speed on Turbulent Burning Velocity

Effect of Laminar Flame Speed on Turbulent Burning Velocity

- Turbulent burning velocity U_t is increased by the laminar flame speed S_L, all other things being equal.
- ⇒ The larger the laminar flame speed, the higher the rate of the increase in the burning velocity by rms turbulent velocity

Department of Applied Mechanics

Effect of Laminar Flame Speed on Turbulent Burning Velocity

Department of Applied Mechanics

Empirical Parameterization for Turbulent Burning Velocity

$$U_t = S_L + u'$$

A linear increase in + burning velocity U_t by turbulent velocity u'

$$\frac{dU_t}{du'} = \text{const}$$

Department of Applied Mechanics

Empirical Parameterization for Turbulent Burning Velocity

$$\frac{U_{t}}{u'} = F_{1}\left(\frac{u'}{S_{L}};\frac{\delta_{L}}{L}\right) = F\left(\frac{u'}{S_{L}};\operatorname{Re}_{t};\operatorname{Pr}\right) = F_{3}(\operatorname{Da};\operatorname{Ka};\operatorname{Pr})$$

$$\operatorname{Re}_{t}\operatorname{Pr} = \frac{u'}{S_{L}}\cdot\frac{L}{\delta_{L}}; \quad \operatorname{Da} = \frac{S_{L}}{u'}\cdot\frac{L}{\delta_{L}}; \quad \operatorname{Ka} \propto \left(\frac{u'}{S_{L}}\right)^{2}\operatorname{Re}_{t}^{-\frac{1}{2}}$$

$$\frac{U_{t}}{u'} = \operatorname{const} \cdot u'^{a} \cdot L^{b} \cdot S_{L}^{c} \cdot v_{u}^{d}$$

$$\frac{u'}{u'} + \frac{u'}{u'} \cdot \frac{u$$

Department of Applied Mechanics

Empirical Parameterization for Turbulent Burning Velocity

Department of Applied Mechanics

Why Does Turbulent Burning Velocity Depend Non-Linearly on the Laminar Flame Speed?

Self-propagation of laminar flame fronts reduces the instantaneous flame surface area, i.e., Σ_f decreases when S_I increases!

Department of Applied Mechanics

Is Turbulent Burning Velocity Always Increased by the Laminar Flame Speed?

Department of Applied Mechanics

Strong Effect of the Lewis Number on Increase in Burning Velocity

An Important Peculiarity of Hydrogen-Air Mixtures

- Molecular diffusion coefficient of hydrogen $D_{\rm H2}$ in the air on the order on 0.6 cm²/s
- Molecular diffusion coefficient of oxygen D_{O2} in the air on the order on 0.2 cm²/s
- Molecular heat diffusivity of the air κ on the order on 0.2 cm²/s

Hydrogen-based Lewis number $Le_{H2} = \kappa/D_{H2}$ *is substantially lower than unity in lean mixtures!*

Effect of the Lewis Number on Turbulent Burning Velocity

Contents of the Lecture

Background

- ✓ Laminar premixed flame
- ✓ Turbulence
- ✓ The major physical mechanism of premixed turbulent combustion
- Experimental data on turbulent burning velocity
 - ✓ Ordinary hydrocarbon-air mixtures
 - ✓ Lean hydrogen-air mixtures
- Why does molecular transport substantially affect turbulent combustion at high Reynolds number?

Department of Applied Mechanics

Temperature Variations in Curved Flamelets

Department of Applied Mechanics

Temperature Variations in Curved Flamelets $J_{A} \cdot \sigma \cdot \delta t = \delta H \cdot \delta z + J_{B} \cdot \delta t$ $J_A \cdot \delta t = \delta H \cdot \delta z + J_R \cdot \delta t$ $\sigma = \sum_{A} / \sum_{B} < 1$ fresh gas (b) curved flame (a) planar flame B'ZON products heat heat conductivity B В preheat zone

Department of Applied Mechanics

Department of Applied Mechanics

Mass Fraction Variations in Curved Flamelets

Department of Applied Mechanics

Mass Fraction Variations in Curved Flamelets

Effect of the Lewis Number on Burning Rate in Curved Flamelets

Effect of Molecular Diffusivity on Burning Rate in Curved Flamelets

diffusion of oxygen diffusion of hydrogen

Temperature Variations in Strained Flamelets

Temperature Variation in Strained Flamelets

Mass Fraction Variation in Strained Flamelets

Department of Applied Mechanics

Effect of the Lewis Number on Burning Rate in Strained Flamelets

Effect of the Lewis Number on Burning Rate in Strained Flamelets

From the paper by Law, C.K. and Sung, C.J., "Structure, aerodynamics, and geometry of premixed flames", Progress in Energy and Combustion Science 26: 459-505 (2000).

Department of Applied Mechanics

Effect of the Lewis Number on Quenching of Strained Flamelets

From the paper by Law, C.K. and Sung, C.J., "Structure, aerodynamics, and geometry of premixed flames", Progress in Energy and Combustion Science 26: 459-505 (2000).

Effect of the Lewis Number on Quenching of Strained Flamelets

From the paper by Law, C.K. and Sung, C.J., "Structure, aerodynamics, and geometry of premixed flames", Progress in Energy and Combustion Science 26: 459-505 (2000).

- Radiation heat losses
- Finite thickness of the reaction zone
- Complex chemistry

Quenching strain rate depends substantially on the Lewis number: quenching is impeded when Le decreases!

Department of Applied Mechanics

Why does Molecular Transport Substantially Affect Premixed Turbulent Combustion at High Reynolds Number?

Department of Applied Mechanics

Flame Instabilities

Department of Applied Mechanics

Why does Molecular Transport Substantially Affect Premixed Turbulent Combustion at High Reynolds Number?

Modeling of turbulent combustion of lean hydrogen-air mixtures?